Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Yttrium pyrogermanate, $\mathbf{Y}_{\mathbf{2}} \mathbf{G e}_{\mathbf{2}} \mathrm{O}_{\mathbf{7}}$ 

Günther J. Redhammer, ${ }^{\text {a* }}$ Georg Roth ${ }^{\text {b }}$ and Georg Amthauer ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Department of Materials Engineering and Physics, Division of Mineralogy, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria, and<br>${ }^{\text {b }}$ Institute of Crystallography, RWTH Aachen University, Jägerstrasse 17/19, D-52056 Aachen, Germany<br>Correspondence e-mail: guenther.redhammer@aon.at

Received 1 August 2007
Accepted 1 September 2007
Online 29 September 2007
The structure of diyttrium digermanate, $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$, has been determined in the tetragonal space group $P 4_{3} 2_{1} 2$. It contains one Y, one Ge (both site symmetry 1 on general position $8 b$ ) and four O atoms [one on special position $4 a$ (site symmetry ..2) and the remaining three on general positions $8 b$ ]. The basic units of the structure are isolated $\mathrm{Ge}_{2} \mathrm{O}_{7}$ groups, sharing one common O atom and displaying a $\mathrm{Ge}-\mathrm{O}-\mathrm{Ge}$ angle of $134.9(3)^{\circ}$, and infinite helical chains of pentagonal $\mathrm{YO}_{7}$ dipyramids, parallel to the $4_{3}$ screw axis. The crystal investigated here represents the left-handed form of the tetragonal $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ compounds $\left(R=\mathrm{Eu}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Er}^{3+}, \mathrm{Tm}^{3+}\right.$ and $\mathrm{Lu}^{3+}$ ).

## Comment

The pyrogermanates of the rare-earth elements have attracted some interest owing to their properties, in particular their optical activity (Stadnicka et al., 1990; Das et al., 1999). The first high-quality single crystals of the $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ series with $R=$ $\mathrm{Tb}^{3+}-\mathrm{Lu}^{3+}$ were grown by Wanklyn (1973) using flux growth techniques. Smolin (1970) reported that powder samples of $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ with $R=\mathrm{Yb}^{3+}, \mathrm{Er}^{3+}, \mathrm{Ho}^{3+}, \mathrm{Y}^{3+}, \mathrm{Dy}^{3+}$ and $\mathrm{Tb}^{3+}$ are tetragonal. Bondar (1979) published refractive indices for the $\mathrm{La}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Gd}^{3+}, \mathrm{Y}^{3+}$ (assumed to be triclinic) and $\mathrm{Er}^{3+}$ (tetragonal) pyrogermanates. Subsequently, complete structure determinations have been published for $\mathrm{Eu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Chiragov et al., 1983), $\mathrm{Tb}_{2} \mathrm{Ge}_{2} \mathrm{O}_{6}$ (Geller \& Gaines, 1987), $\mathrm{Er}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Smolin, 1970), $\mathrm{Tm}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Stadnicka et al., 1990) and $\mathrm{Lu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Palinka et al., 1995). All of these compounds are tetragonal, space group $P 4_{1} 2_{1} 2$, confirming the observation of Smolin (1970) that the lanthanide pyrogermanate series Eu and $\mathrm{Tb}-\mathrm{Lu}$ appears to be isostructural. $\mathrm{La}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Vetter \& Queyroux, 1988), $\mathrm{Nd}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Vetter et al., 1982) and $\mathrm{Gd}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Smolin et al., 1971) are triclinic.

In the present contribution, the structure of the pyrogermanate $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ is found to be tetragonal, space group $P 4_{3} 2_{1} 2$. This is in disagreement with the previous assumption of a triclinic structure for the title compound given by Bondar
(1979) and confirms the findings of tetragonal symmetry by Smolin (1970). The absolute configuration of $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$, however, is different from that of the other lanthanide pyrogermanates $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$, which are reported to crystallize in the space group $P 4_{1} 2_{1} 2$. Refinement of the structure of $\mathrm{Tm}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ in $P 4_{3} 2_{1} 2(\bar{x} \bar{y} \bar{z})$ by Stadnicka et al. (1990) yielded final agreement factors above 0.3; thus, Stadnicka et al. (1990) concluded that their crystal is the $P 4_{1} 2_{1} 2(x y z)$ enantiomorph. The opposite is true for $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (see description of refinement below).

The lattice parameters of the pyrogermanate series $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}(R=\mathrm{Eu}$ and $\mathrm{Tb}-\mathrm{Lu})$ define an almost linear increase with the ionic radius of the $R$ cation, as given by Shannon \& Prewitt (1969), for both the $a$ and the $c$ parameter. The smallest values are found for $\mathrm{Lu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}[a=6.702$ (5) $\AA$ and $c=12.175$ (11) $\AA$ (Palinka et al., 1995)] and the largest lattice parameters are found in $\mathrm{Eu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}[a=6.909 \AA$ and $c=$ $12.558 \AA$ (Chiragov et al., 1983)]. The data for the title compound perfectly fit into those of the $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ series.

The asymmetric unit of $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ contains one Y -, one Ge and four O -atom positions (Fig. 1). The $\mathrm{Ge}^{4+}$ ion is coordi-


Figure 1
A view of the asymmetric unit and some symmetry-related atoms of the title compound, showing $95 \%$ probability displacement ellipsoids and the atomic numbering scheme. [Symmetry codes: (i) $y, x+1,-z+1$; (ii) $y-\frac{1}{2}$, $-x+\frac{1}{2}, z+\frac{1}{4}$; (iii) $x+\frac{1}{2},-y+\frac{3}{2},-z+\frac{5}{4}$; (iv) $y-\frac{1}{2},-x+\frac{3}{2}, z+\frac{1}{4}$; (v) $y-\frac{1}{1}$, $x+1,-z+1$.]


Figure 2
A polyhedral representation of the structure of $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ with only the ditetrahedral $\mathrm{Ge}_{2} \mathrm{O}_{7}$ units shown.
nated by a tetrahedron of four non-equivalent O atoms. Two $\mathrm{GeO}_{4}$ tetrahedra are connected to each other via the corner of atom O 1 , forming isolated $\left[\mathrm{Ge}_{2} \mathrm{O}_{7}\right]^{6-}$ units (Fig. 2). The Ge1$\mathrm{O} 1-\mathrm{Ge} 1$ bridging angle is $134.9(3)^{\circ}$. This is one major difference from the yttrium pyrosilicate $\mathrm{Y}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$, which has a straightened $\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)^{6-}$ configuration (Redhammer \& Roth, 2003). The same pyro-group configuration is also found in $\mathrm{Er}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}, \mathrm{Ho}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}, \mathrm{Tm}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ and $\mathrm{Yb}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$, which all show $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles of $180^{\circ}$ and are isostructural with thortveitite, $\mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Smolin, 1970). Within the lanthanide pyrogermanate series, the $\mathrm{Ge}-\mathrm{O}-\mathrm{Ge}$ angle ranges between 130.0 (1) and 136.0 (4) (Table 2); however, no systematic variation is found from literature data. Individual $\mathrm{Ge}-\mathrm{O}$ bond lengths in $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ range between 1.733 (3) and 1.780 (3) $\AA$. The two shorter bonds, viz. $\mathrm{Ge} 1-\mathrm{O} 2$ and $\mathrm{Ge} 1-$ O 4 , are to O atoms bonded to two additional Y atoms, while the longest $(\mathrm{Ge} 1-\mathrm{O} 3)$ is to an O atom bonded to three Y atoms along with the Ge atom. This fourfold-coordinated O atom obviously contributes less bond strength to the Ge atom; the corresponding $\mathrm{Ge}-\mathrm{O}$ bond is therefore longer. Smolin (1970) made a similar observation for $\mathrm{Er}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$, where the O atom coordinated by three rare-earth ions also formed the longest bond to its nearest Ge neighbour. Owing to the large variation of the individual $\mathrm{Ge}-\mathrm{O}$ bond lengths, the $\mathrm{GeO}_{4}$ tetrahedron in $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ shows large polyhedral distortion parameters (Table 2). Average $\mathrm{Ge}-\mathrm{O}$ bond lengths in the pyrogermanate series $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ are similar, with a tendency towards an increase of $\langle\mathrm{Ge}-\mathrm{O}\rangle$ with increasing radius of the $R$ cation. The tetrahedral angle variance (TAV) and the tetrahedral quadratic elongation (TQE) in the title compound are generally high and are among the largest found for germanium compounds. Regular $\mathrm{GeO}_{4}$ tetrahedra, as realized in the compound $\mathrm{Cu}\left(\mathrm{Cu}_{0.44} \mathrm{Cr}_{4.56}\right) \mathrm{Ge}_{2} \mathrm{O}_{12}$, have TAV and TQE values of $5.32^{\circ}$ and 1.0013 (Redhammer et al., 2007a), while intermediate distortions with TAV values of $\sim 80^{\circ}$ are found, for example, in norbergite-type $\mathrm{Ca}_{3} \mathrm{GeO}_{4} \mathrm{Cl}_{2}$ (Redhammer et al., 2007b) and in $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ (Redhammer et al., 2007c). TAV and TQE values decrease distinctly with increasing radius of $R$


Figure 3
A polyhedral representation of the structure of $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ with only one helical chain of $\mathrm{YO}_{7}$ polyhedra shown for clarity.
in the $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ series, remaining constant above a radius of $\sim 1.0 \AA\left(\mathrm{Er}^{3+}\right)$. The values for the title compound, again, perfectly fit the data for the lanthanide series. The $\mathrm{GeO}_{4}$ tetrahedron shares one edge with a neighbouring Y polyhedron; this O2-O3 edge is the shortest of all tetrahedral edges $[2.600(2) \AA$ ], and the angle opposite this edge is the smallest $\mathrm{O}-\mathrm{Ge}-\mathrm{O}$ bonding angle [95.3 (1) ${ }^{\circ}$. All other edges are unshared and are thus distinctly longer. The bond-valence sum (Brese \& O'Keeffe, 1991) of $\mathrm{Ge}^{4+}$ is close to the ideal value $[S=3.94$ valence units (v.u.)], atom O1, bonded to the two Ge atoms of the $\mathrm{Ge}_{2} \mathrm{O}_{7}$ unit, is slightly under-bonded ( $S=$ 1.89 v.u.), atoms O 2 and O 3 , bonded to two and three Y atoms, respectively, reveal ideal bond-valence sums ( $S=2.00$ v.u.), while atom O 4 is over-bonded ( $S=2.07$ v.u.).
$\mathrm{Y}^{3+}$ is sevenfold coordinated by O atoms; the coordination polyhedron can be described as a distorted pentagonal bipyramid with the pyramidal axis almost parallel to the $c$ direction. Within the tetragonal $R_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ series the average $R-\mathrm{O}$ bond lengths are positively and linearly correlated with the ionic radius of the $R$ cation. The average $\mathrm{Y}-\mathrm{O}$ bond length of the title compound goes along with this trend (Tables 1 and 2). The $\mathrm{YO}_{7}$ polyhedron shares the $\mathrm{O} 3(y, 1+x$, $1-z)-\mathrm{O} 4$ and $\mathrm{O} 3\left(-\frac{1}{2}+y, \frac{1}{2}-x, \frac{1}{4}+z\right)-\mathrm{O} 4\left(-\frac{1}{2}+y, \frac{3}{2}-x, \frac{1}{4}+z\right)$ edges, both 2.818 (4) $\AA$ in length, with two neighbouring $\mathrm{YO}_{7}$ polyhedra to form helical left-handed chains along the $4_{3}$ axis (Fig. 3). Three additional edges of the $\mathrm{YO}_{7}$ polyhedron are shared with neighbouring $\mathrm{YO}_{7}$ polyhedra belonging to two different helical chains; one $\mathrm{O}-\mathrm{O}$ edge is common to the $\mathrm{YO}_{7}$ polyhedron and the $\mathrm{GeO}_{4}$ tetrahedron, and the remaining nine edges are unshared. The difference between the average of the shared edges [ 3.329 (4) $\AA$ ] and that of the unshared edges $[2.797$ (4) $\AA$ ] is large. This indicates distinct distortion of the $\mathrm{YO}_{7}$ polyhedron, which is also expressed by the large bond-length distortion parameter (Table 1). The bond-valence sum for $\mathrm{Y}^{3+}$ is almost ideal ( $S=3.11$ v.u.).

## Experimental

As part of the investigation of the crystal chemistry of ( $\mathrm{Na}, \mathrm{Li}$ )$\mathrm{Ge}_{2} \mathrm{O}_{6} 1: 3$ germanate clinopyroxene compounds, the title compound was obtained by chance during attempts to synthesize $\mathrm{LiYGe}_{2} \mathrm{O}_{6}$ using flux growth methods. A finely ground and homogenized mixture of $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}$ and $\mathrm{GeO}_{2}$ in the stoichiometry $\mathrm{LiYGe}_{2} \mathrm{O}_{6}$ was added to a high-temperature solvent ( $80 \mathrm{wt} \% \mathrm{Li}_{2} \mathrm{MoO}_{4}$ and $20 \mathrm{wt} \% \mathrm{LiVO}_{3}$ ) in a ratio of educt to flux of $1 \mathrm{~g}: 10 \mathrm{~g}$. This staring material was placed in a platinum crucible, covered with a lid, heated in a chamber furnace to 1473 K , held for 24 h at this temperature and cooled to 1073 K at a rate of $1.8 \mathrm{~K} \mathrm{~h}^{-1}$. After dissolution of the flux in hot distilled water, large thin tabular plates, probably of $\mathrm{LiYGe}_{2} \mathrm{O}_{6}$, $\mathrm{YVO}_{4}$ and $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ were obtained. The title compound forms large colourless grains of up to 2 mm , overgrown with the tabular LiY$\mathrm{Ge}_{2} \mathrm{O}_{6}$ crystals.

## Crystal data

$\mathrm{Ge}_{2} \mathrm{O}_{7} \mathrm{Y}_{2}$
$M_{r}=435.04$
Tetragonal, $P 4_{3} 2_{1}{ }^{2}$
$a=6.8022$ (4) $\AA$
$c=12.3759$ (7) $\AA$
$V=572.63$ (6) $\AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=30.45 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& 0.12 \times 0.07 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

## Data collection

## Bruker SMART APEX

diffractometer
Absorption correction: numerical
[via equivalents using $X$-SHAPE
(Stoe \& Cie, 1996)]
$T_{\text {min }}=0.091, T_{\text {max }}=0.18$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.051$
$S=1.19$
661 reflections
53 parameters

6886 measured reflections 661 independent reflections 649 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.062$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

| ${\mathrm{Y} 1-\mathrm{O} 2^{\mathrm{v}}}^{\mathrm{Y}}$ | $2.211(4)$ | $\mathrm{Y} 1-\mathrm{O} 3^{\mathrm{ii}}$ | $2.552(3)$ |
| :--- | :--- | :--- | ---: |
| $\mathrm{Y} 1-\mathrm{O} 4$ | $2.245(3)$ | $\mathrm{Ge} 1-\mathrm{O} 4$ | $1.733(3)$ |
| $\mathrm{Y} 1-\mathrm{O} 4^{\mathrm{iv}}$ | $2.279(3)$ | $\mathrm{Ge} 1-\mathrm{O} 2$ | $1.737(3)$ |
| $\mathrm{Y} 1-\mathrm{O} 3^{\mathrm{i}}$ | $2.284(3)$ | $\mathrm{Ge} 1-\mathrm{O} 1$ | $1.769(2)$ |
| $\mathrm{Y} 1-\mathrm{O} 2^{\mathrm{ii}}$ | $2.373(3)$ | $\mathrm{Ge} 1-\mathrm{O} 3$ | $1.780(3)$ |
| $\mathrm{Y} 1-\mathrm{O} 3^{\text {iii }}$ | $2.386(3)$ |  |  |
| $\mathrm{O} 4-\mathrm{Ge} 1-\mathrm{O} 1$ | $100.24(16)$ | $\mathrm{O} 2-\mathrm{Ge} 1-\mathrm{O} 3$ | $95.32(16)$ |
| $\mathrm{O} 2-\mathrm{Ge} 1-\mathrm{O} 1$ | $110.76(19)$ | $\mathrm{O} 1-\mathrm{Ge} 1-\mathrm{O} 3$ | $115.08(12)$ |
| $\mathrm{O} 4-\mathrm{Ge} 1-\mathrm{O} 3$ | $111.85(16)$ |  |  |

Symmetry codes: (i) $y, x+1,-z+1$; (ii) $y-\frac{1}{2},-x+\frac{1}{2}, z+\frac{1}{4}$; (iii) $x+\frac{1}{2},-y+\frac{3}{2},-z+\frac{5}{4}$; (iv) $y-\frac{1}{2},-x+\frac{3}{2}, z+\frac{1}{4}$; (v) $y-1, x+1,-z+1$.

Systematic extinction and intensity statistics yield two possible space groups, viz. $P 4_{1} 2_{1} 2$ and $P 4_{3} 2_{1} 2$. As the title compound appears to be isostructural with $\mathrm{Eu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}, \mathrm{Tm}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ and $\mathrm{Tb}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ at first glance, structure solution using direct methods (Sheldrick, 1997) was performed in the space group $P 4_{1} 2_{1} 2$, yielding a structure model with one Y , one Ge and four independent O atoms, closely similar to that of, for example, $\mathrm{Tb}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Geller \& Gaines, 1987). The model refined down to $2.1 \%$ in $R_{1}$; however, the Flack (1983) parameter was 1.046 (16), indicative of the wrong absolute structure configuration. Refining the $P 4_{1} 2_{1} 2$ model without the Flack parameter yielded $R_{1} \simeq$ $12 \%$. Thus, the structure was inverted and the space group changed to $P 4_{3} 2_{1} 2$, giving a Flack parameter of 0.0121 (16) for the correct absolute structure model presented here. During comparison with literature data, it became evident that the $\mathrm{O} 2(y)$ coordinate of $\mathrm{Eu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Chiragov et al., 1983) should read -0.0302 instead of +0.0303 .

Data collection: SMART-Plus (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

GJR gratefully acknowledges financial support by the 'Fonds zur Förderung der wissenschaftlichen Forschung (FWF)', Vienna, Austria, under grants R33-N10 (ErwinSchrödinger Rückkehr-Stipendium) and P19762-N10.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ3026). Services for accessing these data are described at the back of the journal.

## References

Bondar, I. A. (1979). Izv. Akad. Nauk SSSR Neorg. Mater. 15, 1008-1013.

Table 2
Selected structural and polyhedral distortion parameters for the title compound compared with other lanthanide pyrogermanates.

|  | $\mathrm{Y}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}{ }^{\text {a }}$ | $\mathrm{Lu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}{ }^{\text {b }}$ | $\mathrm{Tm}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}{ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: |
| $\langle\mathrm{Ge}-\mathrm{O}\rangle(\AA)$ | 1.755 | 1.755 | 1.751 |
| $\langle\mathrm{O}-\mathrm{O}\rangle$ (A) | 2.858 | 2.856 | 2.850 |
| Volume ( $\AA^{\text {3 }}$ ) | 2.662 | 2.630 | 2.637 |
| $\mathrm{BLD}^{g}$ (\%) | 1.13 | 2.68 | 0.84 |
| $\mathrm{TAV}^{h}\left({ }^{\circ}\right.$ ) | 110.20 | 138.43 | 117.09 |
| TQE ${ }^{i}$ | 1.0275 | 1.0364 | 1.0292 |
| $\mathrm{Ge}-\mathrm{O}-\mathrm{Ge}\left({ }^{\circ}\right.$ ) | 134.86 (1) | 130.0 (1) | 135.48 (3) |
| $\langle R-\mathrm{O}\rangle\left(\mathrm{A} \mathrm{A}_{\text {) }}\right.$ ) | 2.333 | 2.284 | 2.314 |
| $\langle\mathrm{O}-\mathrm{O}\rangle(\mathrm{A})$ | 3.116 | 3.052 | 3.092 |
| Volume ( $\AA^{3}$ ) | 18.81 | 17.60 | 18.33 |
| $\mathrm{BLD}^{g}$ (\%) | 3.83 | 2.68 | 3.75 |
|  | $\mathrm{Er}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}{ }^{\text {d }}$ | $\mathrm{Tb}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}{ }^{e}$ | $\mathrm{Eu}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}^{f}$ |
| $\langle\mathrm{Ge}-\mathrm{O}\rangle(\mathrm{A})$ | 1.749 | 1.754 | 1.766 |
| $\langle\mathrm{O}-\mathrm{O}\rangle$ ( A$)$ | 2.847 | 2.857 | 2.876 |
| Volume ( $\AA^{\text {3 }}$ ) | 2.634 | 2.657 | 2.707 |
| $\mathrm{BLD}^{g}$ (\%) | 0.46 | 1.10 | 1.07 |
| $\mathrm{TAV}^{h}\left({ }^{\circ}\right.$ ) | 109.49 | 109.64 | 116.76 |
| TQE ${ }^{i}$ | 1.0275 | 1.0278 | 1.0288 |
| $\mathrm{Ge}-\mathrm{O}-\mathrm{Ge}\left({ }^{\circ}\right)$ | 136.0 (4) | 135.23 (4) | 134.5 (3) |
| $\langle R-\mathrm{O}\rangle\left(\AA{ }^{\text {A }}\right.$ ) | 2.324 | 2.360 | 2.383 |
| $\langle\mathrm{O}-\mathrm{O}\rangle(\mathrm{A})$ | 3.104 | 3.150 | 3.186 |
| Volume ( ${ }^{\text {a }}$ ) | 18.623 | 19.484 | 20.160 |
| $\mathrm{BLD}^{g}$ (\%) | 4.15 | 3.76 | 4.31 |

(a) This study; (b) Palinka et al. (1995); (c) Stadnicka et al. (1990); (d) Smolin (1970); (e) Geller \& Gaines (1987); ( $f$ ) Chiragov et al. (1983); (g) bond-length distortion, BLD = $(100 / n) \sum_{i=1}^{n}\left\{\left[(X-\mathrm{O})_{i}-\langle X-\mathrm{O}\rangle\right] /\langle X-\mathrm{O}\rangle\right\}$, where $n$ is the number of bonds, $(X-\mathrm{O})_{i}$ is the central cation to oxygen length and $\langle X-\mathrm{O}\rangle$ is the average cation-oxygen bond length (Renner \& Lehmann, 1986); ( $h$ ) tetrahedral angle variance, TAV $=\sum_{i=1}^{n}\left(\Theta_{i}-109.47\right)^{2} / 5$ (Robinson et al., 1971), where $\Theta_{i}$ is the individual $\mathrm{O}-\mathrm{T}-\mathrm{O}$ tetrahedral angle; (i) tetrahedral quadratic elongation, TQE $=\sum_{i=1}^{4}\left(l_{i} / l_{\mathrm{t}}\right)^{2} / 4$, where $l_{\mathrm{t}}$ is the centre to vertex distance for a regular tetrahedron whose volume is equal to that of the undistorted tetrahedron with bond length $l_{i}$ (Robinson et al., 1971).

Brandenburg, K. \& Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (2001). SMART-Plus (Version 5.6) and SAINT-Plus (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Chiragov, M. I., Mamedov, Kh. S. \& Kulieva, T. Z. (1983). Sov. Phys. Crystallogr. 28, 613-613.
Das, K., Ghosh, D. \& Wanklyn, B. M. (1999). J. Phys. Condens. Matter, 11, 1745-1755.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Geller, S. \& Gaines, J. M. (1987). Z. Kristallogr. 180, 243-247.
Palinka, K. K., Kuz'mina, N. E. \& Dzhurinskii, B. F. (1995). Zh. Neorg. Khim. 40, 1449-1451.
Redhammer, G. J. \& Roth, G. (2003). Acta Cryst. C59, i103-i106.
Redhammer, G. J., Roth, G. \& Amthauer, G. (2007a). Acta Cryst. C63, i21-i24.
Redhammer, G. J., Roth, G. \& Amthauer, G. (2007b). Acta Cryst. C63, i69-i72.
Redhammer, G. J., Roth, G. \& Amthauer, G. (2007c). Acta Cryst. C63, i47-i50.
Renner, B. \& Lehmann, G. (1986). Z. Kristallogr. 175, 43-59.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smolin, Yu. I. (1970). Sov. Phys. Crystallogr. 15, 36-39.
Smolin, Yu. I., Shepelev, Yu. I. \& Butikova, I. K. (1971). Kristallografiya, 16, 911-917.
Stadnicka, K., Glazer, A. M., Koralewski, M. \& Wanklyn, B. M. (1990). J. Phys. Condens. Matter, 2, 4795-4805.
Stoe \& Cie (1996). X-SHAPE and X-RED. Stoe \& Cie, Darmstadt, Germany.
Vetter, G., Queyroux, F., Labbe, P. H. \& Goverand, M. (1982). J. Solid State Chem. 45, 293-302.
Vetter, G. \& Queyroux, F. (1988). J. Solid State Chem. 73, 287-297.
Wanklyn, B. M. (1973). J. Mater. Sci. 8, 649-653.

