Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Yttrium pyrogermanate, Y2Ge2O7

Günther J. Redhammer,^a* Georg Roth^b and Georg Amthauer^a

^aDepartment of Materials Engineering and Physics, Division of Mineralogy, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria, and ^bInstitute of Crystallography, RWTH Aachen University, Jägerstrasse 17/19, D-52056 Aachen, Germany

Correspondence e-mail: guenther.redhammer@aon.at

Received 1 August 2007 Accepted 1 September 2007 Online 29 September 2007

The structure of diyttrium digermanate, $Y_2Ge_2O_7$, has been determined in the tetragonal space group $P4_32_12$. It contains one Y, one Ge (both site symmetry 1 on general position 8*b*) and four O atoms [one on special position 4*a* (site symmetry ..2) and the remaining three on general positions 8*b*]. The basic units of the structure are isolated Ge₂O₇ groups, sharing one common O atom and displaying a Ge–O–Ge angle of 134.9 (3)°, and infinite helical chains of pentagonal YO₇ dipyramids, parallel to the 4₃ screw axis. The crystal investigated here represents the left-handed form of the tetragonal $R_2Ge_2O_7$ compounds ($R = Eu^{3+}$, Tb³⁺, Er³⁺, Tm³⁺ and Lu³⁺).

Comment

The pyrogermanates of the rare-earth elements have attracted some interest owing to their properties, in particular their optical activity (Stadnicka et al., 1990; Das et al., 1999). The first high-quality single crystals of the R_2 Ge₂O₇ series with R =Tb³⁺–Lu³⁺ were grown by Wanklyn (1973) using flux growth techniques. Smolin (1970) reported that powder samples of $R_2 \text{Ge}_2 \text{O}_7$ with $R = \text{Yb}^{3+}$, Er^{3+} , Ho^{3+} , Y^{3+} , Dy^{3+} and Tb^{3+} are tetragonal. Bondar (1979) published refractive indices for the La³⁺, Nd³⁺, Gd³⁺, Y³⁺ (assumed to be triclinic) and Er³⁺ (tetragonal) pyrogermanates. Subsequently, complete structure determinations have been published for Eu2Ge2O7 (Chiragov et al., 1983), Tb₂Ge₂O₆ (Geller & Gaines, 1987), Er₂Ge₂O₇ (Smolin, 1970), Tm₂Ge₂O₇ (Stadnicka et al., 1990) and Lu₂Ge₂O₇ (Palinka et al., 1995). All of these compounds are tetragonal, space group $P4_12_12$, confirming the observation of Smolin (1970) that the lanthanide pyrogermanate series Eu and Tb-Lu appears to be isostructural. La₂Ge₂O₇ (Vetter & Queyroux, 1988), Nd₂Ge₂O₇ (Vetter et al., 1982) and Gd₂Ge₂O₇ (Smolin et al., 1971) are triclinic.

In the present contribution, the structure of the pyrogermanate $Y_2Ge_2O_7$ is found to be tetragonal, space group $P4_32_12$. This is in disagreement with the previous assumption of a triclinic structure for the title compound given by Bondar (1979) and confirms the findings of tetragonal symmetry by Smolin (1970). The absolute configuration of $Y_2Ge_2O_7$, however, is different from that of the other lanthanide pyrogermanates $R_2Ge_2O_7$, which are reported to crystallize in the space group $P4_12_12$. Refinement of the structure of $Tm_2Ge_2O_7$ in $P4_32_12$ ($\bar{x}\bar{y}\bar{z}$) by Stadnicka *et al.* (1990) yielded final agreement factors above 0.3; thus, Stadnicka *et al.* (1990) concluded that their crystal is the $P4_12_12$ (xyz) enantiomorph. The opposite is true for $Y_2Ge_2O_7$ (see description of refinement below).

The lattice parameters of the pyrogermanate series $R_2\text{Ge}_2\text{O}_7$ (R = Eu and Tb–Lu) define an almost linear increase with the ionic radius of the R cation, as given by Shannon & Prewitt (1969), for both the a and the c parameter. The smallest values are found for Lu₂Ge₂O₇ [a = 6.702 (5) Å and c = 12.175 (11) Å (Palinka *et al.*, 1995)] and the largest lattice parameters are found in Eu₂Ge₂O₇ [a = 6.909 Å and c = 12.558 Å (Chiragov *et al.*, 1983)]. The data for the title compound perfectly fit into those of the $R_2\text{Ge}_2\text{O}_7$ series.

The asymmetric unit of $Y_2Ge_2O_7$ contains one Y-, one Geand four O-atom positions (Fig. 1). The Ge⁴⁺ ion is coordi-

Figure 1

A view of the asymmetric unit and some symmetry-related atoms of the title compound, showing 95% probability displacement ellipsoids and the atomic numbering scheme. [Symmetry codes: (i) y, x + 1, -z + 1; (ii) $y - \frac{1}{2}, -x + \frac{1}{2}, z + \frac{1}{4}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + \frac{5}{4}$; (iv) $y - \frac{1}{2}, -x + \frac{3}{2}, z + \frac{1}{4}$; (v) y - 1, x + 1, -z + 1.]

Figure 2 A polyhedral representation of the structure of $Y_2Ge_2O_7$ with only the ditetrahedral Ge_2O_7 units shown.

nated by a tetrahedron of four non-equivalent O atoms. Two GeO4 tetrahedra are connected to each other via the corner of atom O1, forming isolated $[Ge_2O_7]^{6-}$ units (Fig. 2). The Ge1-O1-Ge1 bridging angle is 134.9 (3)°. This is one major difference from the yttrium pyrosilicate Y₂Si₂O₇, which has a straightened (Si₂O₇)⁶⁻ configuration (Redhammer & Roth, 2003). The same pyro-group configuration is also found in Er₂Si₂O₇, Ho₂Si₂O₇, Tm₂Si₂O₇ and Yb₂Si₂O₇, which all show Si-O-Si angles of 180° and are isostructural with thortveitite, Sc₂Si₂O₇ (Smolin, 1970). Within the lanthanide pyrogermanate series, the Ge-O-Ge angle ranges between 130.0 (1) and 136.0 (4) $^{\circ}$ (Table 2); however, no systematic variation is found from literature data. Individual Ge-O bond lengths in $Y_2Ge_2O_7$ range between 1.733 (3) and 1.780 (3) Å. The two shorter bonds, viz. Ge1–O2 and Ge1– O4, are to O atoms bonded to two additional Y atoms, while the longest (Ge1-O3) is to an O atom bonded to three Y atoms along with the Ge atom. This fourfold-coordinated O atom obviously contributes less bond strength to the Ge atom; the corresponding Ge-O bond is therefore longer. Smolin (1970) made a similar observation for Er₂Ge₂O₇, where the O atom coordinated by three rare-earth ions also formed the longest bond to its nearest Ge neighbour. Owing to the large variation of the individual Ge-O bond lengths, the GeO₄ tetrahedron in Y₂Ge₂O₇ shows large polyhedral distortion parameters (Table 2). Average Ge–O bond lengths in the pyrogermanate series $R_2Ge_2O_7$ are similar, with a tendency towards an increase of $\langle Ge-O \rangle$ with increasing radius of the R cation. The tetrahedral angle variance (TAV) and the tetrahedral quadratic elongation (TQE) in the title compound are generally high and are among the largest found for germanium compounds. Regular GeO₄ tetrahedra, as realized in the compound Cu(Cu_{0.44}Cr_{4.56})Ge₂O₁₂, have TAV and TQE values of 5.32° and 1.0013 (Redhammer et al., 2007a), while intermediate distortions with TAV values of $\sim 80^{\circ}$ are found, for example, in norbergite-type Ca₃GeO₄Cl₂ (Redhammer et al., 2007b) and in Ca₂Ge₇O₁₆ (Redhammer et al., 2007c). TAV and TQE values decrease distinctly with increasing radius of R

Figure 3

A polyhedral representation of the structure of $Y_2Ge_2O_7$ with only one helical chain of YO₇ polyhedra shown for clarity.

in the R_2 Ge₂O₇ series, remaining constant above a radius of ~1.0 Å (Er³⁺). The values for the title compound, again, perfectly fit the data for the lanthanide series. The GeO₄ tetrahedron shares one edge with a neighbouring Y polyhedron; this O2–O3 edge is the shortest of all tetrahedral edges [2.600 (2) Å], and the angle opposite this edge is the smallest O–Ge–O bonding angle [95.3 (1)°]. All other edges are unshared and are thus distinctly longer. The bond-valence sum (Brese & O'Keeffe, 1991) of Ge⁴⁺ is close to the ideal value [S = 3.94 valence units (v.u.)], atom O1, bonded to the two Ge atoms of the Ge₂O₇ unit, is slightly under-bonded (S = 1.89 v.u.), atoms O2 and O3, bonded to two and three Y atoms, respectively, reveal ideal bond-valence sums (S = 2.00 v.u.), while atom O4 is over-bonded (S = 2.07 v.u.).

 Y^{3+} is sevenfold coordinated by O atoms; the coordination polyhedron can be described as a distorted pentagonal bipyramid with the pyramidal axis almost parallel to the c direction. Within the tetragonal R_2 Ge₂O₇ series the average R-O bond lengths are positively and linearly correlated with the ionic radius of the R cation. The average Y-O bond length of the title compound goes along with this trend (Tables 1 and 2). The YO₇ polyhedron shares the O3(y, 1 + x, y)1-z)-O4 and O3 $\left(-\frac{1}{2}+y,\frac{1}{2}-x,\frac{1}{4}+z\right)$ -O4 $\left(-\frac{1}{2}+y,\frac{3}{2}-x,\frac{1}{4}+z\right)$ edges, both 2.818 (4) Å in length, with two neighbouring YO_7 polyhedra to form helical left-handed chains along the 4₃ axis (Fig. 3). Three additional edges of the YO_7 polyhedron are shared with neighbouring YO₇ polyhedra belonging to two different helical chains; one O-O edge is common to the YO₇ polyhedron and the GeO₄ tetrahedron, and the remaining nine edges are unshared. The difference between the average of the shared edges [3.329 (4) Å] and that of the unshared edges [2.797 (4) Å] is large. This indicates distinct distortion of the YO_7 polyhedron, which is also expressed by the large bond-length distortion parameter (Table 1). The bond-valence sum for Y^{3+} is almost ideal (S = 3.11 v.u.).

Experimental

As part of the investigation of the crystal chemistry of (Na,Li)- Ge_2O_6 1:3 germanate clinopyroxene compounds, the title compound was obtained by chance during attempts to synthesize LiYGe₂O₆ using flux growth methods. A finely ground and homogenized mixture of Li₂CO₃, Y₂O₃ and GeO₂ in the stoichiometry LiYGe₂O₆ was added to a high-temperature solvent (80 wt% Li₂MoO₄ and 20 wt% LiVO₃) in a ratio of educt to flux of 1 g:10 g. This staring material was placed in a platinum crucible, covered with a lid, heated in a chamber furnace to 1473 K, held for 24 h at this temperature and cooled to 1073 K at a rate of 1.8 K h⁻¹. After dissolution of the flux in hot distilled water, large thin tabular plates, probably of LiYGe₂O₆, YVO₄ and Y₂Ge₂O₇ were obtained. The title compound forms large colourless grains of up to 2 mm, overgrown with the tabular LiY-Ge₂O₆ crystals.

Crystal data

Ge₂O₇Y₂ $M_r = 435.04$ Tetragonal, $P4_{321}$ a = 6.8022 (4) Å c = 12.3759 (7) Å V = 572.63 (6) Å³ Z = 4 Mo K\alpha radiation μ = 30.45 mm⁻¹ T = 295 (2) K 0.12 \times 0.07 \times 0.06 mm

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: numerical
[via equivalents using X-SHAPE
(Stoe & Cie, 1996)]
$T_{\rm min} = 0.091, T_{\rm max} = 0.18$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	$\Delta \rho_{\rm max} = 0.88 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.051$	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
S = 1.19	Absolute structure: Flack (1983),
661 reflections	228 Friedel pairs
53 parameters	Flack parameter: 0.0121 (16)

6886 measured reflections

 $R_{\rm int} = 0.062$

661 independent reflections 649 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

2.211 (4)	Y1-O3 ⁱⁱ	2.552 (3)
2.245 (3)	Ge1-O4	1.733 (3)
2.279 (3)	Ge1-O2	1.737 (3)
2.284 (3)	Ge1-O1	1.769 (2)
2.373 (3)	Ge1-O3	1.780 (3)
2.386 (3)		
100.24 (16)	O2-Ge1-O3	95.32 (16)
110.76 (19)	O1-Ge1-O3	115.08 (12)
111.85 (16)		
	2.211 (4) 2.245 (3) 2.279 (3) 2.284 (3) 2.373 (3) 2.386 (3) 100.24 (16) 110.76 (19) 111.85 (16)	$\begin{array}{ccccccc} 2.211 & (4) & Y1-O3^{ii} \\ 2.245 & (3) & Ge1-O4 \\ 2.279 & (3) & Ge1-O2 \\ 2.284 & (3) & Ge1-O1 \\ 2.373 & (3) & Ge1-O3 \\ 2.386 & (3) \\ \hline \\ 100.24 & (16) & O2-Ge1-O3 \\ 110.76 & (19) & O1-Ge1-O3 \\ 111.85 & (16) \\ \end{array}$

Symmetry codes: (i) y, x + 1, -z + 1; (ii) $y - \frac{1}{2}, -x + \frac{1}{2}, z + \frac{1}{4}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + \frac{5}{4}$; (iv) $y - \frac{1}{2}, -x + \frac{3}{2}, z + \frac{1}{4}$; (v) y - 1, x + 1, -z + 1.

Systematic extinction and intensity statistics yield two possible space groups, viz. $P4_12_12$ and $P4_32_12$. As the title compound appears to be isostructural with Eu2Ge2O7, Tm2Ge2O7 and Tb2Ge2O7 at first glance, structure solution using direct methods (Sheldrick, 1997) was performed in the space group P41212, yielding a structure model with one Y, one Ge and four independent O atoms, closely similar to that of, for example, Tb₂Ge₂O₇ (Geller & Gaines, 1987). The model refined down to 2.1% in R_1 ; however, the Flack (1983) parameter was 1.046 (16), indicative of the wrong absolute structure configuration. Refining the $P4_12_12$ model without the Flack parameter yielded $R_1 \simeq$ 12%. Thus, the structure was inverted and the space group changed to P4₃2₁2, giving a Flack parameter of 0.0121 (16) for the correct absolute structure model presented here. During comparison with literature data, it became evident that the O2(y) coordinate of Eu₂Ge₂O₇ (Chiragov et al., 1983) should read -0.0302 instead of +0.0303.

Data collection: *SMART-Plus* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

GJR gratefully acknowledges financial support by the 'Fonds zur Förderung der wissenschaftlichen Forschung (FWF)', Vienna, Austria, under grants R33-N10 (Erwin-Schrödinger Rückkehr-Stipendium) and P19762-N10.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ3026). Services for accessing these data are described at the back of the journal.

References

Bondar, I. A. (1979). Izv. Akad. Nauk SSSR Neorg. Mater. 15, 1008-1013.

Table 2

Selected structural and polyhedral distortion parameters for the title compound compared with other lanthanide pyrogermanates.

	$Y_2Ge_2O_7^a$	Lu ₂ Ge ₂ O ₇ ^b	Tm ₂ Ge ₂ O ₇ ^c
$\langle \text{Ge}-\text{O}\rangle$ (Å)	1.755	1.755	1.751
$\langle O-O \rangle$ (Å)	2.858	2.856	2.850
Volume (Å ³)	2.662	2.630	2.637
$BLD^{g}(\%)$	1.13	2.68	0.84
$\mathrm{TAV}^{h}(\circ)$	110.20	138.43	117.09
TQE ⁱ	1.0275	1.0364	1.0292
Ge–O–Ge (°)	134.86 (1)	130.0 (1)	135.48 (3)
$\langle R-O \rangle$ (Å)	2.333	2.284	2.314
$\langle O-O \rangle$ (Å)	3.116	3.052	3.092
Volume $(Å^3)$	18.81	17.60	18.33
BLD^{g} (%)	3.83	2.68	3.75
	$\mathrm{Er}_{2}\mathrm{Ge}_{2}\mathrm{O_{7}}^{d}$	Tb ₂ Ge ₂ O ₇ ^e	Eu ₂ Ge ₂ O ₇ ^f
$\langle \text{Ge}-\text{O}\rangle$ (Å)	1.749	1.754	1.766
$\langle O-O \rangle$ (Å)	2.847	2.857	2.876
Volume $(Å^3)$			
volume (11)	2.634	2.657	2.707
BLD ^g (%)	2.634 0.46	2.657 1.10	2.707 1.07
BLD ^g (%) TAV ^{h} (°)	2.634 0.46 109.49	2.657 1.10 109.64	2.707 1.07 116.76
BLD ^g (%) TAV ^{h} (°) TQE ^{i}	2.634 0.46 109.49 1.0275	2.657 1.10 109.64 1.0278	2.707 1.07 116.76 1.0288
BLD ^g (%) TAV ^{h} (°) TQE ^{i} Ge-O-Ge (°)	2.634 0.46 109.49 1.0275 136.0 (4)	2.657 1.10 109.64 1.0278 135.23 (4)	2.707 1.07 116.76 1.0288 134.5 (3)
BLD ^g (%) TAV ^h (°) TQE ⁱ Ge-O-Ge (°) $\langle R-O \rangle$ (Å)	2.634 0.46 109.49 1.0275 136.0 (4) 2.324	2.657 1.10 109.64 1.0278 135.23 (4) 2.360	2.707 1.07 116.76 1.0288 134.5 (3) 2.383
$ \begin{array}{l} \text{RLD}^{g} (\%) \\ \text{TAV}^{h} (\circ) \\ \text{TQE}^{i} \\ \text{Ge}-\text{O}-\text{Ge} (\circ) \\ \langle R-\text{O} \rangle (\mathring{A}) \\ \langle O-\text{O} \rangle (\mathring{A}) \end{array} $	2.634 0.46 109.49 1.0275 136.0 (4) 2.324 3.104	2.657 1.10 109.64 1.0278 135.23 (4) 2.360 3.150	2.707 1.07 116.76 1.0288 134.5 (3) 2.383 3.186
$ \begin{array}{l} \text{RD}^{g}(\%) \\ \text{TAV}^{h}(\circ) \\ \text{TQE}^{i} \\ \text{Ge}-\text{O}-\text{Ge}(\circ) \\ \hline & \langle R-\text{O}\rangle(\mathring{A}) \\ & \langle O-\text{O}\rangle(\mathring{A}) \\ & \text{Volume}(\mathring{A}^{3}) \end{array} $	2.634 0.46 109.49 1.0275 136.0 (4) 2.324 3.104 18.623	2.657 1.10 109.64 1.0278 135.23 (4) 2.360 3.150 19.484	2.707 1.07 116.76 1.0288 134.5 (3) 2.383 3.186 20.160

(a) This study; (b) Palinka *et al.* (1995); (c) Stadnicka *et al.* (1990); (d) Smolin (1970); (e) Geller & Gaines (1987); (f) Chiragov *et al.* (1983); (g) bond-length distortion, BLD = $(100/n)\sum_{i=1}^{n} [[(X - O)_i - \langle X - O \rangle]/\langle X - O \rangle]$, where *n* is the number of bonds, $(X - O)_i$ is the central cation to oxygen length and $\langle X - O \rangle$ is the average cation-oxygen bond length (Renner & Lehmann, 1986); (h) tetrahedral angle variance, TAV = $\sum_{i=1}^{n} (\Theta_i - 109.47)^{2/5}$ (Robinson *et al.*, 1971), where Θ_i is the individual O-T-O tetrahedral angle; (i) tetrahedral quadratic elongation, TOE = $\sum_{i=1}^{4} (I/t)^{2/4}$, where l_i is the centre to vertex distance for a regular tetrahedron whose volume is equal to that of the undistorted tetrahedron with bond length l_i (Robinson *et al.*, 1971).

- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Bruker (2001). *SMART-Plus* (Version 5.6) and *SAINT-Plus* (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chiragov, M. I., Mamedov, Kh. S. & Kulieva, T. Z. (1983). Sov. Phys. Crystallogr. 28, 613–613.
- Das, K., Ghosh, D. & Wanklyn, B. M. (1999). J. Phys. Condens. Matter, 11, 1745–1755.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Geller, S. & Gaines, J. M. (1987). Z. Kristallogr. 180, 243-247.
- Palinka, K. K., Kuz'mina, N. E. & Dzhurinskii, B. F. (1995). *Zh. Neorg. Khim.* **40**, 1449–1451.
- Redhammer, G. J. & Roth, G. (2003). Acta Cryst. C59, i103-i106.
- Redhammer, G. J., Roth, G. & Amthauer, G. (2007a). Acta Cryst. C63, i21-i24.
- Redhammer, G. J., Roth, G. & Amthauer, G. (2007b). Acta Cryst. C63, i69-i72.
- Redhammer, G. J., Roth, G. & Amthauer, G. (2007c). Acta Cryst. C63, i47-i50.
- Renner, B. & Lehmann, G. (1986). Z. Kristallogr. 175, 43-59.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.
- Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Smolin, Yu. I. (1970). Sov. Phys. Crystallogr. 15, 36-39.
- Smolin, Yu. I., Shepelev, Yu. I. & Butikova, I. K. (1971). *Kristallografiya*, 16, 911–917.
- Stadnicka, K., Glazer, A. M., Koralewski, M. & Wanklyn, B. M. (1990). J. Phys. Condens. Matter, 2, 4795–4805.
- Stoe & Cie (1996). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany. Vetter, G., Queyroux, F., Labbe, P. H. & Goverand, M. (1982). J. Solid State Chem. 45, 293–302.
- Vetter, G. & Queyroux, F. (1988). J. Solid State Chem. 73, 287–297.
- Wanklyn, B. M. (1973). J. Mater. Sci. 8, 649-653.